This version of the paper differs from the print version only in the date line. The received and published dates below are the correct ones.

Publisher's Note: Coarse-grained loop algorithms for Monte Carlo simulation of quantum spin systems [Phys. Rev. E 66, 056705 (2002)]

Kenji Harada and Naoki Kawashima

(Received 14 February 2003; published 20 March 2003)

DOI: 10.1103/PhysRevE.67.039903 PACS number(s): 02.70.Ss, 02.70.Uu, 05.10.Ln, 75.40.Mg, 99.10.Fg This article was published 26 November 2002 with some of the horizontal lines in Table I positioned incorrectly. Table I was corrected online as of 14 March 2003. The initial, incorrect table appears in the printed version of the article. The corrected table appears below.

TABLE I. The coarse-grained algorithm for the XXZ spin models. The density of vertices ρ and the scattering probabilities of worms *P*. $h \equiv H_p/(2S), \ \bar{l} \equiv 2S - l, \ \text{and} \ \bar{m} \equiv 2S - m.$

Σ		Region I	Region II	Region III	Region IV	Region V	Region VI
$\begin{pmatrix} I & m \\ I & m \end{pmatrix}$	$\rho(\Sigma) =$	A	В	В	В	A	С
	$P(\downarrow \Sigma) =$	0	$\frac{m(-J-J'-h)}{2B}$	0	0	0	$\frac{\bar{m}(-J+J'-h)}{2C}$
$\begin{pmatrix} l & m \\ l^+ & m \end{pmatrix}$	$P(\nearrow \Sigma) =$	$\frac{\bar{m}(J+J'-h)}{4A}$	0	0	0	$\frac{\bar{m}(J+J'-h)}{4A}$	$\frac{\bar{m}J}{2C}$
	$P(\rightarrow \Sigma) =$	$\frac{m(J-J'-h)}{4A}$	$\frac{mJ}{2B}$	$\frac{m(J-J'-h)}{4B}$	0	0	0
					m(-J+J'+h)		
	$P(\downarrow \Sigma) =$	0	$\frac{\bar{m}(-J-J'+h)}{2B}$	$\frac{\bar{m}(-J-J'+h)}{2B}$	$\frac{+\bar{m}(-J-J'+h)}{2B}$	$\frac{m(-J+J'+h)}{2A}$	$\frac{m(-J+J'+h)}{2C}$
$\begin{pmatrix} l & m \\ l^- & m \end{pmatrix}$	$P(\nearrow \Sigma) =$	$\frac{m(J+J'+h)}{4A}$	0	$\frac{m(J+J'+h)}{4B}$	$\frac{mJ}{2B}$	$\frac{mJ}{2A}$	$\frac{mJ}{2C}$
	$P(\rightarrow \Sigma) =$	$\frac{\bar{m}(J\!-\!J'\!+\!h)}{4A}$	$\frac{\overline{m}J}{2B}$	$\frac{\bar{m}J}{2B}$	$\frac{\bar{m}J}{2B}$	$\frac{\bar{m}(J-J'+h)}{4A}$	0
	$P(\downarrow \Sigma) =$	0	0	0	0	0	0
$\begin{pmatrix} l+1 & m \\ l^+ & m+1 \end{pmatrix}$	$P(\nearrow \Sigma) =$	$\frac{J+J'+h}{\bar{l}(2J)}$	0	$\frac{J+J'+h}{\bar{l}(2J)}$	$\frac{1}{\overline{I}}$	$\frac{1}{\overline{I}}$	$\frac{1}{\overline{I}}$
	$P(\rightarrow \Sigma) =$	$\frac{J-J'-h}{\overline{J'(2,1)}}$	$\frac{1}{\overline{7}}$	$\frac{J - J' - h}{\bar{l}(2J)}$	0	0	0
	$P(\downarrow \Sigma) =$	0	0	0	0	0	0
$\binom{l-1}{l} m \binom{m-1}{m}$	$P(\nearrow \Sigma) =$	$\frac{J+J'-h}{l(2J)}$	0	0	0	$\frac{J+J'-h}{l(2J)}$	$\frac{1}{l}$
$\begin{pmatrix} l-1 & m \\ l^- & m-1 \end{pmatrix}$	$P(\rightarrow \Sigma) =$	$\frac{J - J' + h}{l(2J)}$	$\frac{1}{l}$	$\frac{1}{l}$	$\frac{1}{l}$	$\frac{J - J' + h}{l(2J)}$	0
$\begin{pmatrix} l+1 & m \\ l^- & m+1 \end{pmatrix}$	$P(\downarrow \Sigma) = P(\nearrow \Sigma) = P(\rightarrow \Sigma) = 0$ and $P(\uparrow \Sigma) = 1$						
$\begin{pmatrix} l-1 & m \\ l^+ & m-1 \end{pmatrix}$	$P(\downarrow \Sigma) = P(\nearrow \Sigma) = P(\rightarrow \Sigma) = 0$ and $P(\uparrow \Sigma) = 1$						
	$A \equiv \frac{1}{4} [lm(J+J'+3h) + (l\bar{m}+\bar{l}m)(J-J'+h) + \bar{l}\bar{m}(J+J'-h)]$						
	$B = lmh + (l\bar{m} + \bar{l}m) \frac{-J' + h}{2}, C = \frac{1}{2} [lm(J' + h) + \bar{l}\bar{m}(J' - h)]$						